Monatshefte für Chemie 114, 113-122 (1983)

Zum Problem Camphenilansäure—Camphenansäure und Isocamphenilansäure—Isocamphenansäure*

Synthesen in der Isocamphanreihe, 19. Mitt.¹

Gerhard Buchbauer^a, Ernst Haslinger^b, Wolfgang Robien^b und Renate Vitek^{a,2}

^a Institut für Pharmazeutische Chemie, Universität Wien, A-1090 Wien, Österreich

^b Institut für Organische Chemie, Universität Wien, A-1090 Wien, Österreich

(Eingegangen 14. Juni 1982. Angenommen 12. Juli 1982)

Syntheses in the Isocamphane Series, XIX. About the Problem Camphenilanic Acid—Camphenanic Acid and Isocamphenilanic Acid—Isocamphenanic Acid

The configuration of camphenilanic acid (1) has been determined by NMRspectroscopic studies. ¹H-, ¹³C-NMR and 2D-shift correlation spectroscopy have been used. The socalled camphenanic acid is identical with 1, isocamphenanic acid appears to be a mixture of 1 and 2, the same is true for different camphenilanic acids described in the literature.

(Keywords: Camphenilanic acid; Camphenilanol; 3-Dimethylbicyclo[2.2.1]heptane-2-carboxylic acid; Isocamphenilanic acid; Isocamphenilanol; ¹³C-NMR; ¹H-NMR; 2 D-Shift correlation)

Einleitung

Die leichte Zugänglichkeit zur *endo*-konfigurierten Camphenilansäure (1) und damit verbunden die Möglichkeit, erstmals größere Mengen von 1 isomerenrein herzustellen¹, veranlaßte uns, nicht nur eine genaue spektroskopische Analyse von 1 durchzuführen, sondern auch die Beziehung der sogenannten "Camphenilansäure" (Schmp. 65°), Camphenansäure (Schmp. 95°), Isocamphenilansäure (Schmp.

^{*} Herrn Prof. Mag. pharm. Dr. K. Jentzsch mit den besten Wünschen zum 70. Geburtstag gewidmet.

118°) (2) und Isocamphenansäure (Schmp. 74°) zueinander näher zu untersuchen.

Über die Identität dieser Säuren, die durch Oxidation von Camphen (3) erhalten wurden³, herrscht noch immer Unklarheit*.

Alder und Roth konnten 1957 die Identität und die sterische Zuordnung von 1 und 2 durch eine Totalsynthese aus Cyclopentadien und Seneciosäure beweisen⁵. Doch schon kurze Zeit darauf behaupteten Hückel und Rohrer⁶ ebenfalls, erstmals reine Camphenilansäure (durch Oxidation von **3** mit $CrO_2Cl_2^{7,8}$), allerdings mit einem Schmp. von 55—56°, isoliert zu haben. Die Schmelzpunktsdifferenz von nahezu 40° zu der von Alder et al. isolierten Camphenilansäure (mit Schmp. 92°) glaubten sie durch Mischkristallbildung von **1** mit der ebenfalls von Alder und Mitarb. erstmals hergestellten Dehydrocamphenilansäure (**4**) (Schmp. 94°) erklären zu können. 3 Jahre später schließlich schloß Wolinsky⁹ mit seiner Untersuchung über die Oxidation von **3** mit KMnO₄ dieses Kapitel vorläufig ab, bestätigte die Befunde von Alder und Roth bezüglich **1** und **2** und bezeichnete die "65°-Camphenilansäure", die Isocamphenansäure und die von Hückel et al. isolierte Säure mit dem bisher tiefsten Schmp. als ein Gemisch von **1** und **2**, die Camphenansäure dagegen identisch mit **1**.

Vergleicht man nun die Angaben dieser Autoren, so fällt auf, daß:

1) alle Beweise sich nur auf Schmelzpunktsangaben beziehen,

2) bis heute jegliche spektroskopische Daten fehlen und

3) durch Reduktion der Methylester dieser Säuren bis auf 2 jeweils nur ein Isocamphanol** mit dem Schmp. 77° erhalten wurde.

Eine spektroskopische Untersuchung von 1 und 2 sollte daher die Identität dieser beiden epimeren Säuren sicherstellen und somit die Verwirrung, die um diese 4 Säuren herrscht, beseitigen und darüber hinaus spektroskopische Unterscheidungsmerkmale schaffen, die gerade weil 1 eine so wichtige Startsubstanz für Synthesen von endokonfigurierten Isocamphanverbindungen ist — jederzeit eine Überprüfung des Epimerenverhältnisses erlauben.

^{*} Über einen genaueren historischen Überblick, siehe Lit.4.

^{**} Zur Nomenklatur der Isocamphanole siehe Lit.¹.

Ergebnisse und Diskussion

Die beiden epimeren Verbindungen 1 und 2 besitzen deutlich unterschiedliche ¹H-NMR-Spektren. Dies gilt auch für die ¹³C-Resonanzen. Die Signale des 250 MHz-¹H-NMR-Spektrums von 2 sind trotz überlappender Resonanzen mit Hilfe von Doppelresonanzexperimenten (Spinentkoppelungen, NOE- und INDOR-Messungen) relativ einfach zuzuordnen (siehe Abb. 1). H₁ absorbiert bei höchster Frequenz

und ist mit dem *exo*-ständigen Proton in Position 6 gekoppelt. H₂ und H_{7syn} besitzen Signale, die um 0,4 ppm zu niedriger Frequenz verschoben sind und einander teilweise überdecken. Zwischen 1,0 und 1,8 ppm befinden sich die Absorptionsbanden der restlichen Protonen. Die Zuordnung der Methylgruppensignale wurde durch NOE-Messungen getroffen. Von CH₃-*exo* findet man einen Overhauser-Effekt bei den Signalen von H₂ und H₄, von CH₃-*endo* einen entsprechenden Effekt bei den Resonanzen von H₂ und H_{5endo}. Damit ist die Zuordnung dieser Protonensignale, sowie auch die räumliche Nachbarschaft der betreffenden Kerne zu den Methylgruppen bewiesen. Die Konfiguration am C₂ wird auch noch durch die deutlich erkennbare long-range-Kopplung (W-Kopplung¹⁰, siehe auch Lit.¹¹) von H₂ mit H_{7anti} von 1,3 Hz belegt.

Abb. 2

2 ist also eine 3-Dimethylbicyclo[2.2.1]heptan-2-carbonsäure (1RS, 2SR, 4SR) (Abb. 1 und 2).

Die ¹³C-NMR-Signale wurden durch eine Reihe selektiver {¹H}-¹³C-Doppelresonanzexperimente zugeordnet. Die Ergebnisse der ¹H- und ¹³C-NMR-Spektroskopie sind in Tabelle 1 angeführt und in guter Übereinstimmung mit Untersuchungen an ähnlichen Systemen^{12, 13}.

Das ¹H-NMR-Spektrum von **1** besitzt eine Reihe stark überlappender Resonanzen. Nur die Signale von H₁, H₂ und H₄ sind auf Grund ihres Kopplungsmusters sofort zuzuordnen. Die beiden Singuletts der Methylgruppen wurde wieder durch Messung von Overhauser-Effekten zugeordnet. Von der CH₃-Gruppe in exo-Position aus kann man einen NOE bei H₂, H₄ und H_{7syn} erzeugen und NOE-Differenzspektroskopie von CH₃-endo aus gestattet es, aus dem Signalhaufen bei $\delta \sim 1,6$ ppm das Multiplett von H_{5endo} zu isolieren. Eine weitere Analyse dieses Spinsystems war nur mit Hilfe der ¹³C-NMR-Spektroskopie möglich. Wir haben deshalb ein 2-dimensionales ¹H-¹³C-Shift-Korrelationsspektrum aufgenommen^{14,15}. Dieses Spektrum besitzt zwei zueinander normale Frequenzachsen, wobei die eine die ¹H-, die andere die ¹³C-Verschiebung mißt. Ist ein Proton direkt an ein C-Atom gebunden, dann tritt bei der chemischen Verschiebung beider Kerne ein Korrelationssignal auf. Abb. 3 zeigt einen "Contour plot"¹⁵ dieses Tabelle 1

¹ H	δ[ppm]	J	Hz	13C	[ppm]
1	2.43	2.6	1 3	1	40.9
2.000	$2,10 \\ 2.37$	1.2	2.5	2	±0,3 56.2
-ex0 4	1.86	-,-	_,0	3	38.5
5 ero	1,67			4	49.1
5endo	1,35			5	24,5
6_{exo}	1,40			6	21,5
6endo	1,97			7	37,6
7_{syn}	$1,\!63$			COOH	180,6
7_{anti}	1,26			CH _{3endo}	22,8
CH _{3endo}	1,04			CH_{3exo}	31,9
CH3exo	1,13			2000	

$Camphenilans \"aure$	(1)	
-----------------------	-----	--

Isocamphenilansäure (2)

$^{1}\mathrm{H}$	[ppm]	J	Hz	13C	[ppm]
$\begin{array}{c} 1\\ 2_{endo}\\ 4\\ 5_{endo}\\ 5_{exo}\\ 5_{endo}\\ 6_{exo}\\ 7_{syn}\\ 7_{anti}\\ \mathrm{CH}_{3endo}\\ \mathrm{CH}_{3exo}\end{array}$	2,40 $1,99$ $1,78$ $1,69$ $1,39$ $1,11$ $1,55$ $2,00$ $1,23$ $1,17$ $1,02$	$\begin{array}{c} 1,6_{exo}\\ 1,7_{anti}\\ 1,4\\ 2_{endo}7_{anti}\\ 4,5_{exo}\\ 4,7_{anti}\\ 4,7_{syn}\\ 5_{endo}5_{exo}\\ -5_{endo}6_{endo}\\ 5_{endo}7_{syn}\\ 5_{endo}6_{exo}\\ 5_{exo}6_{exo}\\ 6_{endo}7_{syn}\\ 6_{endo}6_{exo}\\ -7_{anti}7_{syn}\\ -\end{array}$	$\begin{array}{c} 4,0\\ 1,3\\ 1,0\\ 1,3\\ 4,3\\ 1,2\\ 1,2\\ -12,0\\ 9,0\\ 3,0\\ 3,1\\ 12,1\\ 3,3\\ -12,5\\ -10,5\end{array}$	1 2 3 4 5 6 7 COOH CH _{3endo} CH _{3exo}	$\begin{array}{r} 40,9\\59,0\\42,5\\48,1\\24,0\\28,5\\37,5\\180,7\\27,5\\25,4\end{array}$

Systems. Die Vorgangsweise bei der ¹H- und ¹³C-Zuordnung ist an einem Beispiel eingezeichnet. Damit gelingt es, die schon im ¹H-NMR-Spektrum eindeutig zugeordneten Methylgruppensignale auch im ¹³C-NMR-Spektrum zu identifizieren. Die Korrelationssignale der Kohlenstoffe in Position 5, 6 und 7 gestatten es nun, auch die chemische Verschiebung der entsprechenden diastereotopen Protonen zu bestimmen (siehe Tab. 1).

Beim Vergleich der ¹H-Verschiebungen beider Substanzen fällt auf, daß der δ -Wert von H₂ in *exo*-Position deutlich höher ist. Befindet sich die Carboxylgruppe in *endo*-Position, wie in 1, so wird das Signal der vicinalen *endo*-ständigen Methylgruppe offenbar durch die magnetische Anisotropie der Carbonylfunktion zu niedrigeren Frequenzen verschoben. Analoges gilt für die *exo*-ständige Methylgruppe in 2. Auch in den ¹³C-NMR-Spektren zeigt sich, daß die jeweils zur Carboxylgruppe synklinal angeordnete Methylgruppe bei niedrigerer Frequenz absorbiert (γ -Effekt^{16, 26}).

Eine weitere Unterscheidungshilfe ist das unterschiedliche Fragmentierungsverhalten im Massenspektrum. Bei 1 verläuft der Hauptfragmentierungsweg über eine Retro-*Diels-Alder*-Reaktion in die Bruchstücke m/e 101 (Basispeak, $C_5H_9O_2^+$ -Ion) und m/e 67 (Cyclopentylion, $C_5H_7^{+17}$), während bei 2 die Fragmentierung von der Seitenkette her mit dem Verlust der Carboxylgruppe beginnt und von dem nun entstandenen Fragment m/e 123 durch Abspaltung von CH₃-, bzw. CH₂-Einheiten Schritt für Schritt bis zu m/e 67 (Basispeak) fortschreitet.

Die endgültige Festlegung der Struktur von 1 und 2 erlaubte uns, nun auch die Unklarheiten bezüglich der Identität und Strukturen der vier bereits in der Einleitung genannten Säuren zu beseitigen. Die von Alder und Roth⁵ durch eine unabhängige Totalsynthese auf chemischem Weg bewiesene Struktur von 1 und 2 wird durch die spektroskopischen Befunde bestätigt, ebenso die Vermutung Wolinskys⁹ über die Identität der Camphenansäure. Camphenansäure ist demnach tatsächlich

identisch mit 1. Die früher als Camphenilansäure bezeichnete Säure (Schmp. 65°) ist eine Mischung von 75 bzw. 82% 1 und 25 bzw. 18% 2 und die Isocamphenansäure ein Gemisch von 69 bzw. 86% 1 und 31 bzw. 14% 2. Die *Hückel*'sche Camphenilansäure (Schmp. $55-56^{\circ})^6$ besteht aus 79% 1 und 21% 2, wie aus einem Schmelzpunktsdiagramm ersichtlich ist (Abb. 4).

Die von Hückel et al.⁶ angedeutete Isomerisierung beim Erhitzen der "65°-Säure" von 1 in 2 konnte nicht bestätigt werden. Der Schmelzpunkt von 65° der entsprechenden Mischung bleibt nach wiederholtem Aufheizen und Abkühlen und auch nach dreistündigem Erhitzen auf 120° konstant. Ebensowenig ändert sich der Schmelzpunkt der reinen Camphenilansäure, womit die früher verschiedentlich angezweifelte Thermostabilität zumindest in diesem Temperaturbereich bewiesen ist. Dagegen konnte die Isomerisierung von endo nach exo bei Einwirken von SOCl₂ auf 1 bestätigt werden^{6,18}.

Auch die schwere Zugänglichkeit von 1 durch fraktionierte Kristallisation des Säuregemisches ist nun aus der Schmelzkurve leicht zu erklären. Das nach der *Diels-Alder*-Reaktion von Mesityloxid und Cyclopentadien mit nachfolgender Hydrierung und Haloformreaktion entstandene Säuregemisch^{1,19,20} enthält maximal 79% 1^{21} , so daß man sich bei Umkristallisationsversuchen stets auf dem linken Ast des Schmelzpunktsdiagramms in Richtung Isocamphenilansäure (2) bewegt. Auch aus dem nach *Alder* et al.⁵ durch Dienaddition von Seneciosäure an Cyclopentadien mit nachfolgender Hydrierung entstandenen Säuregemisch ließ sich durch Kristallisation immer nur die *exo*-Säure abtrennen, was nun leicht zu erklären ist. Schließlich ist auch die Literaturangabe²² über eine Umlagerung von 1 in 2 bei Kristallisationsversuchen des früher als einheitliche Substanz angesehenen Säuregemisches nur so zu interpretieren, daß man sich eben hier am linken Ast der Schmelzpunktskurve bewegte und 2 anreicherte.

Zwei weitere Erklärungsversuche für die so unterschiedlichen Schmelzpunktsangaben sollen schließlich noch kurz erwähnt werden. So könnten z. B. polymorphe Kristallformen von 1 vorliegen, was wir aber als unwahrscheinlich halten, da wir bei unseren Kristallisationsversuchen keine Änderungen der Kristallformen und des Schmelzpunktes gegenüber den literaturbekannten Angaben beobachten konnten. Auch ist es nicht von der Hand zu weisen, daß es sich bei diesen "isomeren" Säuren lediglich um Gemische der Enantiomeren von 1, also von teilweise racemisierter Camphenilansäure gehandelt haben könnte. Darauf haben bereits *Hana* und $Koch^{23}$ beim Studium des Schmelzpunktsdiagramms der *exo*-Säure, nämlich von (+)- und (--)-Isocamphenilansäure hingewiesen.

In weiterer Folge wurden 1 und 2 mit Diazomethan verestert und die Ester mit LiAl H_4 in die beiden Isocamphanole 5 und 6 übergeführt. Die spektroskopischen Daten von 5 und 6 stimmen mit der von *Alder* und *Roth* angegebenen Konfiguration überein. Somit läßt sich auch die letzte in der Einleitung angedeutete Unklarheit beseitigen: Bei dem Isocamphanol mit dem Schmp. 77° handelte es sich, wie schon früher vermutet²⁴, lediglich um eine Mischung von 5 und 6, so daß die als Isocamphenansäure und die als "Camphenilansäure-65°" bezeichneten Säuren nun auch indirekt und erneut als Mischungen von 1 und 2 bewiesen wurden.

Experimenteller Teil

Die Aufnahme der ¹H- und ¹³C-NMR-Spektren erfolgte mit einem Bruker WM 250 Kernresonanzspektrometer (bereitgestellt vom Fonds zur Förderung der wissenschaftlichen Forschung, Projekt Nr. 4009). Es wurden Lösungen der Substanzen in CDCl₃ (0,2 mol/l) in Röhrehen mit 5 mm Durchmesser vermessen. Die Deuteriumresonanz des Lösungsmittels wurde für die Feld-Frequenzstabilisierung verwendet.

Typische Parameter:

¹ \dot{H} : SW = 1000 Hz, Hz/Pt. = 0,24, PW 1 μ s (ca. 15°), NS = 40. ¹³C: SW = 15000 Hz, Hz/Pt. = 0,9, PW = 7 μ s (30°), NS = 1000.

 $^{1}H^{-13}C$ -Shift-Korrelation:

 $\begin{array}{l} \text{Pulsfolge: } \pi/2 \ (^{1}\text{H}) \cdot t_{1}/2 - \pi(^{13}\text{C}) \cdot t_{1}/2 - \Delta_{1} - \pi/2(^{1}\text{H}) - \pi/2(^{13}\text{C}) - \Delta_{2} - \text{FID.} \\ \text{PW} \ (90^{\circ}, \ ^{13}\text{C}) = 21 \ \mu\text{s}, \ \text{PW} \ (90^{\circ}, \ ^{1}\text{H}) = 36 \ \mu\text{s}, \ \Delta_{1} = 4 \ \text{ms}, \ \Delta_{2} = 2,67 \ \text{ms}, \end{array}$

 $SW_1 = 400 \text{ Hz}, SW_2 = 3500 \text{ Hz}, Datenmatrix: 2 \text{ Kx} 128.$

Für die Aufnahme der Massenspektren mit dem Varian MAT CH 7 (70 eV) danken wir Herrn Dr. A. Nikiforov (Institut für Organische Chemie der Universität Wien). Die Schmelzpunkte wurden mit dem Kofler-Heiztischmikroskop bestimmt und sind — wenn nicht anders angegeben — unkorrigiert. Der Firma Dragoco, Wien-Liesing, danken wir für ihr freundliches Interesse.

1 wurde durch Oxidation von 3 mit $H_2O_2^{1,3,25}$ oder mit KMnO₄⁹ erhalten und durch Umkristallisation aus *n*-Pentan gereinigt. Schmp. (korr.): 94°. 2 wurde nach bewährter Vorschrift²⁰ gewonnen, 5 und 6 durch Reduktion mit LiAlH₄ aus den mit Diazomethan hergestellten Methylestern von 1 und 2 nach Lit.⁵ bereitet, 6 außerdem noch nach Lit.²⁰ erhalten. Für die Erstellung des Schmelzpunktsdiagramms wurden auf 0,1 mg genau gewogene Mengen von 1 und 2 zusammengeschmolzen, die erstarrten Schmelzen fein gepulvert und der Schmp. wie oben angegeben bestimmt. Zur Darstellung des Säurechlorids siehe Lit.²⁰.

Spektroskopische Daten von 5 (Camphenilanol, endo-Isocamphanol, 3,3-Dimethylbicyclo[2.2.1]heptan-2-endo-hydroxymethan):

¹H-NMR (*TMS*, CDCl₃, δ /ppm): gem. CH₃ 0,86 und 1,0; H₁ 2,27; CH₂OH 3,63 (²J = 12 Hz, ³J mit H₂ = 4 Hz).

MS (m/e, r. I.): 136 (M⁺-18, 19), 121 (25), 107 (19), 93 (84), 81 (33), 69 (47), 67 (100), 55 (48), 41 (97).

Spektroskopische Daten von 6 (Isocamphenilanol, *exo*-Isocamphanol, 3,3-Dimethylbicyclo[2.2.1]heptan-2-exo-hydroxymethan):

¹H-NMR (*TMS*, CDCl₃, δ /ppm): gem. CH₃ 0,92 und 1,03; H₁⁻2,10; CH₂OH 3,52 (²J = 12 Hz, ³J = 4 Hz).

MS (m/e, r. I.): 136 (M+-18, 21), 121 (26), 107 (21), 93 (79), 81 (38), 69 (44), 67 (100), 55 (47), 41 (93).

Literatur

- 18. Mitt.: Buchbauer G., Vitek R., Hirsch M. C., Kurz Ch., Cech B., Vas E. M., Monatsh. Chem. 113, 1433 (1982).
- ² Aus der geplanten Dissertation von Vitek R.
- ³ Henderson G. G., Sutherland M. M. J., J. Chem. Soc. [London] 105, 1710 (1914).
- ⁴ Simonsen J., The Terpenes, 2nd ed., Vol. II, S. 294 ff. Cambridge: University Press. 1957.
- ⁵ Alder K., Roth W., Chem. Ber. **90**, 1830 (1957).
- ⁶ Hückel W., Rohrer H., Chem. Ber. 91, 198 (1958).
- 7 Etard A., C.R. hebd. Séances Acad. Sci. Paris 116, 434 (1893).
- ⁸ Bredt J., Jagelki W., Liebigs Ann. Chem. 310, 112 (1900).
- ⁹ Wolinsky J., J. Org. Chem. 26, 4150 (1961).
- ¹⁰ Meinwald J., Meinwald Y. C., J. Amer. Chem. Soc. 85, 2541 (1963).
- ¹¹ Buchbauer G., Hana G. W., Koch H., Monatsh. Chem. 107, 387 (1976).
- ¹² Philipsborn W. v., Pure and Applied Chem. 40, 159 (1974).
- ¹³ Laszlo P., Schleyer P. R., J. Amer. Chem. Soc. 86, 1171 (1964).
- ¹⁴ Bax A., Dissertation, Universität Oxford, 1981.
- ¹⁵ Haslinger E., Kalchhauser H., Robien W., Monatsh. Chem. 113, 805 (1982).
- ¹⁶ Breitmaier E., Voelter W., ¹³C-NMR-Spectroscopy, Monographs in Modern Chemistry, Vol. 5, S. 73. Weinheim: Verlag Chemie. 1974.
- ¹⁷ Dimmel D. R., Wolinsky J., J. Org. Chem. **32**, 2735 (1962).
- ¹⁸ Lipp P., Dessauer H., Wolf E., Liebigs Ann. Chem. **525**, 278 (1936).

- ¹⁹ Hana G. W., Dissertation, Universität Wien, 1971.
- ²⁰ Hana G. W., Buchbauer G., Koch H., Monatsh. Chem. 107, 945 (1976).
- ²¹ Bachner J., Huber U., Buchbauer G., Monatsh. Chem. 112, 679 (1981).
- ²² Henderson G. G., Heilbron I. M., J. Chem. Soc. [London] 99, 1887 (1911).
- ²³ Hana G. W., Koch H., Arch. Pharm. **311**, 498 (1978).
 ²⁴ Hückel W., Schultze H., Liebigs Ann. Chem. **575**, 32 (1952).
- ²⁵ Boelens H., Ter Heide R., Dtsch. Offenlegungsschrift 29 44 412 (1980).
- 26 Tori K., Ueyama M., Tsuji T., Matsumara H., Tanida H., Iwamura H., Kushida K., Nishida T., Sato S., Tetrahedron Lett. 1974, 327.